Molecular mechanism of Oxr1p mediated disassembly of yeast V-ATPase

EMBO Rep. 2024 May;25(5):2323-2347. doi: 10.1038/s44319-024-00126-5. Epub 2024 Apr 2.

Abstract

The eukaryotic vacuolar H+-ATPase (V-ATPase) is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel subcomplexes. We recently reported that the TLDc protein Oxr1p induces V-ATPase disassembly in vitro. Whether and how Oxr1p is involved in enzyme disassembly in vivo, however, is not known. Here, using yeast genetics and fluorescence microscopy, we show that Oxr1p is essential for efficient V-ATPase disassembly in the cell. Supporting biochemical and biophysical in vitro experiments show that whereas Oxr1p-driven holoenzyme disassembly can occur in the absence of nucleotides, the presence of ATP greatly accelerates the process. ATP hydrolysis is needed, however, for subsequent release of Oxr1p so that the free V1 can adopt the autoinhibited conformation. Overall, our study unravels the molecular mechanism of Oxr1p-induced disassembly that occurs in vivo as part of the canonical V-ATPase regulation by reversible disassembly.

Keywords: Oxr1p; Reversible Disassembly; TLDc Domain; Vacuolar H+-ATPase.

MeSH terms

  • Adenosine Triphosphate* / metabolism
  • Hydrolysis
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism
  • Vacuolar Proton-Translocating ATPases* / genetics
  • Vacuolar Proton-Translocating ATPases* / metabolism