Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress

Nat Commun. 2020 Apr 2;11(1):1626. doi: 10.1038/s41467-020-15471-x.

Abstract

Some insects, such as dragonflies, have evolved nanoprotrusions on their wings that rupture bacteria on contact. This has inspired the design of antibacterial implant surfaces with insect-wing mimetic nanopillars made of synthetic materials. Here, we characterise the physiological and morphological effects of mimetic titanium nanopillars on bacteria. The nanopillars induce deformation and penetration of the Gram-positive and Gram-negative bacterial cell envelope, but do not rupture or lyse bacteria. They can also inhibit bacterial cell division, and trigger production of reactive oxygen species and increased abundance of oxidative stress proteins. Our results indicate that nanopillars' antibacterial activities may be mediated by oxidative stress, and do not necessarily require bacterial lysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology*
  • Bacteria / chemistry
  • Bacteria / drug effects
  • Bacteria / metabolism
  • Cell Membrane / chemistry
  • Cell Membrane / drug effects*
  • Cell Membrane / metabolism
  • Electric Impedance
  • Nanostructures / chemistry*
  • Odonata
  • Oxidative Stress / drug effects*
  • Reactive Oxygen Species / metabolism
  • Surface Properties
  • Titanium / chemistry*
  • Titanium / pharmacology*

Substances

  • Anti-Bacterial Agents
  • Reactive Oxygen Species
  • Titanium