Ca2+-permeable P2X receptor channels in cultured rat retinal ganglion cells

J Neurosci. 1999 May 1;19(9):3353-66. doi: 10.1523/JNEUROSCI.19-09-03353.1999.

Abstract

ATP has been identified as an excitatory neurotransmitter in both the CNS and peripheral nervous system; however, little is known about the functional properties of ATP-gated channels in central neurons. Here we used a culture preparation of the postnatal rat retina to test the responsiveness of identified retinal ganglion cells (RGCs) and putative amacrines to exogenous ATP and other purinoceptor agonists. Rapidly activating ATP-induced currents (IATP) were exclusively generated in a subpopulation (approximately 65%) of RGCs. The latter were identified by Thy1.1 immunostaining, repetitive firing patterns, and activation of glutamatergic autaptic currents. None of the putative amacrine cells was ATP-sensitive. IATP could be induced with ATP, ADP, and alpha,beta-mATP but not with adenosine. It was antagonized by suramin. The current-voltage relationship of IATP showed marked inward rectification. Dose-response analysis yielded an EC50 of 14.5 microM, with a Hill coefficient of 0.9. Noise analysis of IATP suggested a mean single channel conductance of 2.3 pS. Retinal P2X purinoceptor channels exhibited a high permeability for Ca2+. PCa/PCs obtained from reversal potentials of IATP under bi-ionic conditions amounted to 2. 2 +/- 0.7. In the majority of cells, the decay of IATP was biphasic. The degree of current inactivation during the first 2 sec of agonist application was highly variable. Heterogeneity was also found with respect to the sensitivity to ADP and alpha,beta-mATP and the blocking action of suramin, suggesting expression of multiple P2X receptor subtypes. Our results indicate that activation of P2X receptor channels represents an important pathway for Ca2+ influx in postnatal RGCs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine / pharmacology
  • Adenosine Diphosphate / pharmacology
  • Adenosine Triphosphate / pharmacology
  • Animals
  • Calcium / metabolism*
  • Cells, Cultured
  • Kinetics
  • Membrane Potentials / drug effects
  • Membrane Potentials / physiology
  • Patch-Clamp Techniques
  • Rats
  • Receptors, Purinergic P2 / drug effects
  • Receptors, Purinergic P2 / physiology*
  • Regression Analysis
  • Retinal Ganglion Cells / cytology
  • Retinal Ganglion Cells / drug effects
  • Retinal Ganglion Cells / physiology*
  • Suramin / pharmacology

Substances

  • Receptors, Purinergic P2
  • Suramin
  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Adenosine
  • Calcium