Binding of correolide to K(v)1 family potassium channels. Mapping the domains of high affinity interaction

J Biol Chem. 1999 Sep 3;274(36):25237-44. doi: 10.1074/jbc.274.36.25237.

Abstract

Correolide, a novel nortriterpene natural product, potently inhibits the voltage-gated potassium channel, K(v)1.3, and [(3)H]dihydrocorreolide (diTC) binds with high affinity (K(d) approximately 10 nM) to membranes from Chinese hamster ovary cells that express K(v)1.3 (Felix, J. P., Bugianesi, R. M., Schmalhofer, W. A., Borris, R., Goetz, M. A., Hensens, O. D., Bao, J.-M., Kayser, F. , Parsons, W. H., Rupprecht, K., Garcia, M. L., Kaczorowski, G. J., and Slaughter, R. S. (1999) Biochemistry 38, 4922-4930). Mutagenesis studies were used to localize the diTC binding site and to design a high affinity receptor in the diTC-insensitive channel, K(v)3.2. Transferring the pore from K(v)1.3 to K(v)3.2 produces a chimera that binds peptidyl inhibitors of K(v)1.3 with high affinity, but not diTC. Transfer of the S(5) region of K(v)1.3 to K(v)3.2 reconstitutes diTC binding at 4-fold lower affinity as compared with K(v)1.3, whereas transfer of the entire S(5)-S(6) domain results in a normal K(v)1.3 phenotype. Substitutions in S(5)-S(6) of K(v)1.3 with nonconserved residues from K(v)3.2 has identified two positions in S(5) and one in S(6) that cause significant alterations in diTC binding. High affinity diTC binding can be conferred to K(v)3.2 after substitution of these three residues with the corresponding amino acids found in K(v)1.3. These results suggest that lack of sensitivity of K(v)3.2 to diTC is a consequence of the presence of Phe(382) and Ile(387) in S(5), and Met(458) in S(6). Inspection of K(v)1.1-1.6 channels indicates that they all possess identical S(5) and S(6) domains. As expected, diTC binds with high affinity (K(d) values 7-21 nM) to each of these homotetrameric channels. However, the kinetics of binding are fastest with K(v)1.3 and K(v)1.4, suggesting that conformations associated with C-type inactivation will facilitate entry and exit of diTC at its binding site. Taken together, these findings identify K(v)1 channel regions necessary for high affinity diTC binding, as well as, reveal a channel conformation that markedly influences the rate of binding of this ligand.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • CHO Cells
  • Cricetinae
  • Humans
  • Kinetics
  • Molecular Sequence Data
  • Potassium Channels / chemistry
  • Potassium Channels / metabolism*
  • Protein Binding
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / metabolism
  • Triterpenes / antagonists & inhibitors
  • Triterpenes / metabolism*

Substances

  • Potassium Channels
  • Recombinant Fusion Proteins
  • Triterpenes
  • correolide