Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis

Biosens Bioelectron. 2000 Jan;14(10-11):861-9. doi: 10.1016/s0956-5663(99)00056-1.

Abstract

A highly sensitive laser induced fluorescence (LIF) detection system based on a 635 nm laser diode and cyanine-5 (Cy-5) dye, is described for use with a planar, microfluidic, capillary electrophoresis (CE) chip. The CE-chip is able to determine a protein biological threat agent simulant, ovalbumin (Ov), by performing an immunoassay separation of Cy-5 labeled anti-ovalbumin from its complex with Ov, in under 30 s. A confocal, epiluminescent detection system utilizing a photomultiplier tube gave optimum results with a 400 microm pinhole, an Omega 682DF22 emission filter, a 645DRLP02 dichroic mirror, a 634.54 +/- 5 nm excitation filter, and a Power Technology ACMO8 635 nm laser operated at 11.2 mW. Using this detector, a microchip CE device with a separation efficiency of 42,000 plates and an etch depth of 20 microm, gave a concentration detection limit of 9 pM Cy-5. This limit corresponds to the determination of 4560 injected molecules and detection of 900 of these molecules, given a probe volume of 1.6 pl and a probing efficiency of 20%.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrophoresis, Capillary / instrumentation*
  • Electrophoresis, Capillary / methods
  • Fluorescence
  • Lasers
  • Microscopy, Confocal / instrumentation
  • Microscopy, Confocal / methods