Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy

Anal Chem. 2001 Aug 1;73(15):3751-8. doi: 10.1021/ac010339j.

Abstract

Oxygen consumption of individual bovine embryos was noninvasively quantified by scanning electrochemical microscopy (SECM). A probe microelectrode was used to scan near a single embryo surface in a culture medium to monitor the oxygen reduction current at 37 degrees C, under a water-saturated atmosphere of 5% CO2 and 95% air. The oxygen concentration profiles near the embryos were in good agreement with the theoretical spherical diffusion. When an embryo reached the stage of a morula with a 74-microm radius on day 6 after in vitro fertilization, the oxygen concentration difference (deltaC) between the bulk solution and the morula surface was 6.90 +/- 1.35 microM. The oxygen consumption rate (F) of the single morula was estimated to be (1.40 +/- 0.27) x 10(-14) mol s(-1). After the SECM measurement, the embryo was continuously cultured for another 2 days and grew to the stage of a blastocyst with a 100-microm radius. For the blastocyst, the deltaC values for the inner cell mass side and the trophoblast side were 16.40 +/- 1.83 and 9.14 +/- 1.68 microM, respectively. The oxygen consumption rate of the blastocyst was found to be in the range of (2.50 +/- 0.46) x 10(-14) mol s(-1) < F < (4.49 +/- 0.50) x 10(-14) mol s(-1). We have carried out SECM measurements for 19 embryos, and the results were compared in detail with these from an optical microscopic observation. The deltaC values for the morulae on day 6 after in vitro fertilization were strongly related to the morphological embryo quality. The morulae showing a larger deltaC value developed into blastocysts of a larger size, and the deltaC value after the subsequent 2 days of cultivation was found to be increased.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cattle
  • Electrochemistry / instrumentation
  • Embryo, Mammalian / metabolism*
  • Microscopy, Scanning Probe*
  • Oxygen / analysis*
  • Oxygen / metabolism*
  • Oxygen Consumption / physiology*

Substances

  • Oxygen