The concentration and isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge, Pacific Ocean

Geochim Cosmochim Acta. 1993 Feb;57(4):875-87. doi: 10.1016/0016-7037(93)90175-v.

Abstract

The abundance and 13C/12C ratios of carbon were analyzed in basaltic glass from twenty locations along the Juan de Fuca Ridge using a 3-step combustion/extraction technique. Carbon released during the first two combustion steps at 400-500 degrees C and 600-650 degrees C is interpreted to be secondary, and only the carbon recovered during a final combustion step at approximately 1200 degrees C is thought to be indigenous to the samples. For carbon released at approximately 1200 degrees C, glasses analyzed as 1-2 mm chips contained 23-146 ppm C with delta 13C values of -4.8 to -9.3%, whereas samples crushed to 38-63 microns or 63-90 microns yielded 56-103 ppm C with delta 13C values of -6.1 to -9.2%. The concentrations and isotopic compositions of the primary carbon dissolved in the glasses and present in the vesicles are similar to those previously reported for other ocean-ridge basalts. The Juan de Fuca basaltic magmas were not in equilibrium with respect to carbon when they erupted and quenched on the sea floor. Evidence of disequilibrium includes (1) a large range of carbon contents among glasses collected at similar depths, (2) a highly variable calculated carbon isotopic fractionation between melt and vapor determined by comparing crushed and uncrushed splits of the same sample, and (3) a lack of correlation between vesicle abundance, carbon concentration, and depth of eruption. Variations in carbon concentration and delta 13C ratios along the ridge do not correlate with major element chemistry. The observed relationship between carbon concentrations and delta 13C values may be explained by late-stage, variable degrees of open-system (Rayleigh-like) degassing.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Carbon / analysis*
  • Carbon Dioxide / analysis
  • Carbon Isotopes*
  • Geological Phenomena
  • Geology*
  • Glass / analysis*
  • Mass Spectrometry
  • Pacific Ocean

Substances

  • Carbon Isotopes
  • Carbon Dioxide
  • Carbon