Real-time interaction between a neuromorphic electronic circuit and the spinal cord

IEEE Trans Neural Syst Rehabil Eng. 2001 Sep;9(3):319-26. doi: 10.1109/7333.948461.

Abstract

We present a novel demonstration of real-time dynamic interaction between an oscillatory spinal cord (isolated lamprey nervous system) and electronic hardware that mimics the spinal motor pattern generating circuitry. The spinal cord and the neuromorphic circuit were interfaced in unidirectional and bidirectional modes. Bidirectional coupling resulted in stable, persistent oscillations. This experimental platform offers a unique paradigm to examine the intrinsic dynamics of neural circuitry. The neuromorphic analog very large scale integration (aVLSI) design and real-time capabilities of this approach may provide a particularly powerful means of restoring complex neuromotor function using neuroprostheses.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Computer Systems*
  • Electric Stimulation Therapy / instrumentation
  • Lampreys / physiology*
  • Locomotion / physiology*
  • Motor Neurons / physiology
  • Muscle, Skeletal / innervation
  • Nerve Net / physiology*
  • Neural Networks, Computer*
  • Neuromuscular Junction / physiology
  • Prosthesis Design
  • Spinal Cord / physiology*
  • User-Computer Interface