Sleep-waking discharge patterns of median preoptic nucleus neurons in rats

J Physiol. 2002 Sep 1;543(Pt 2):665-77. doi: 10.1113/jphysiol.2002.023085.

Abstract

Several lines of evidence show that the preoptic area (POA) of the hypothalamus is critically implicated in the regulation of sleep. Functionally heterogeneous cell groups with sleep-related discharge patterns are located both in the medial and lateral POA. Recently a cluster of neurons showing sleep-related c-Fos immunoreactivity was found in the median preoptic nucleus (MnPN). To determine the specificity of the state-related behaviour of MnPN neurons we have undertaken the first study of their discharge patterns across the sleep-waking cycle. Nearly 76 % of recorded cells exhibited elevated discharge rates during sleep. Sleep-related units showed several distinct types of activity changes across sleep stages. Two populations included cells displaying selective activation during either non-rapid eye movement (NREM) sleep (10 %) or REM sleep (8 %). Neurons belonging to the predominant population (58 %) exhibited activation during both phases of sleep compared to wakefulness. Most of these cells showed a gradual increase in their firing rates prior to sleep onset, elevated discharge during NREM sleep and a further increase during REM sleep. This specific sleep-waking discharge profile is opposite to that demonstrated by wake-promoting monoaminergic cell groups and was previously found in cells localized in the ventrolateral preoptic area (vlPOA). We hypothesize that these vlPOA and MnPN neuronal populations act as parts of a GABAergic/galaninergic sleep-promoting ('anti-waking') network which exercises inhibitory control over waking-promoting systems. MnPN neurons that progressively increase activity during sustained waking and decrease activity during sustained sleep states may be involved in homeostatic regulation of sleep.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Electrophysiology
  • Male
  • Neurons / physiology
  • Preoptic Area / cytology
  • Preoptic Area / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Sleep, REM / physiology*
  • Theta Rhythm
  • Wakefulness / physiology*