Binding of mercury(II) to dissolved organic matter: the role of the mercury-to-DOM concentration ratio

Environ Sci Technol. 2002 Aug 15;36(16):3564-70. doi: 10.1021/es025699i.

Abstract

The binding of Hg(II) to dissolved organic matter (DOM; hydrophobic acids isolated from the Florida Everglades by XAD-8 resin) was measured at a wide range of Hg-to-DOM concentration ratios using an equilibrium dialysis ligand exchange method. Conditional distribution coefficients (K(DOM)') determined by this method were strongly affected by the Hg/DOM concentration ratio. At Hg/DOM ratios below approximately 1 microg of Hg/mg of DOM, we observed very strong interactions (K(DOM)' = 10(23.2+/-1.0) L kg(-1) at pH = 7.0 and I = 0.1), indicative of mercury-thiol bonds. Hg/DOM ratios above approximately 10 microg of Hg/mg of DOM, as used in most studies that have determined Hg-DOM binding constants, gave much lower K(DOM)' values (10(10.7+/-1.0) L kg(-1) at pH = 4.9-5.6 and I = 0.1), consistent with Hg binding mainly to oxygen functional groups. These results suggest that the binding of Hg to DOM under natural conditions (very low Hg/DOM ratios) is controlled by a small fraction of DOM molecules containing a reactive thiol functional group. Therefore, Hg/DOM distribution coefficients used for modeling the biogeochemical behavior of Hg in natural systems need to be determined at low Hg/DOM ratios.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Kinetics
  • Mercury / chemistry*
  • Models, Chemical*
  • Organic Chemicals
  • Water / chemistry
  • Water Pollutants / analysis*

Substances

  • Organic Chemicals
  • Water Pollutants
  • Water
  • Mercury