Inhibitory molecules in signal transduction pathways of cardiac hypertrophy

Hypertens Res. 2002 Jul;25(4):491-8. doi: 10.1291/hypres.25.491.

Abstract

Cardiac hypertrophy is induced by a variety of diseases, such as hypertension, valvular diseases, myocardial infarction, and endocrine disorders. Although cardiac hypertrophy may initially be a beneficial response that normalizes wall stress and maintains normal cardiac function, prolonged hypertrophy is a leading cause of heart failure and sudden death. A number of studies have elucidated molecules responsible for the development of cardiac hypertrophy, including the mitogen-activated protein (MAP) kinases pathway, Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and calcium/calmodulin-dependent protein phosphatase calcineurin pathway. These molecules may be targets for therapies designed to prevent the progression of cardiac hypertrophy. Numerous studies have focused on characterization of the intracellular signal transduction molecules that promote cardiac hypertrophy in order to clarify the molecular mechanisms, but there have been only a few reports on the inhibitory regulators of hypertrophic response. Recently, several molecules have attracted much attention as endogenous inhibitory regulators of cardiac hypertrophy. Enhancement of these inhibitory regulators would also seem to be a potential approach for the pharmacological treatment of hypertrophy. In this review, we summarize the inhibitory molecules of cardiac hypertrophy.

Publication types

  • Review

MeSH terms

  • Animals
  • Cardiomegaly / physiopathology*
  • Humans
  • Signal Transduction / physiology*