Identifying cytotoxic T cell epitopes from genomic and proteomic information: "The human MHC project."

Rev Immunogenet. 2000;2(4):477-91.

Abstract

Complete genomes of many species including pathogenic microorganisms are rapidly becoming available and with them the encoded proteins, or proteomes. Proteomes are extremely diverse and constitute unique imprints of the originating organisms allowing positive identification and accurate discrimination, even at the peptide level. It is not surprising that peptides are key targets of the immune system. It follows that proteomes can be translated into immunogens once it is known how the immune system generates and handles peptides. Recent advances have identified many of the basic principles involved. The single most selective event is that of peptide binding to MHC, making it particularly important to establish accurate descriptions and predictions of peptide binding for the most common MHC variants. These predictions should be integrated with those of other steps involved in antigen processing, as these become available. The ability to translate the accumulating primary sequence databases in terms of immune recognition should enable scientists and clinicians to analyze any protein of interest for the presence of potentially immunogenic epitopes. The computational tools to scan entire proteomes should also be developed, as this would enable a rational approach to vaccine development and immunotherapy. Thus, candidate vaccine epitopes might be predicted from the various microbial genome projects, tumor vaccine candidates from mRNA expression profiling of tumors ("transcriptomes") and auto-antigens from the human genome.

Publication types

  • Review

MeSH terms

  • Antigen Presentation
  • Epitopes / genetics
  • Genome
  • Histocompatibility Antigens Class I / chemistry
  • Histocompatibility Antigens Class I / genetics
  • Histocompatibility Antigens Class I / metabolism
  • Humans
  • Immunogenetics
  • Major Histocompatibility Complex*
  • Models, Molecular
  • Neural Networks, Computer
  • Peptide Library
  • Polymorphism, Genetic
  • Protein Binding
  • Proteome
  • T-Lymphocytes, Cytotoxic / immunology*
  • T-Lymphocytes, Helper-Inducer / immunology
  • Vaccines / genetics
  • Vaccines / immunology

Substances

  • Epitopes
  • Histocompatibility Antigens Class I
  • Peptide Library
  • Proteome
  • Vaccines