Spinal pretreatment with antisense oligodeoxynucleotides against exon-1, -4, or -8 of mu-opioid receptor clone leads to differential loss of spinal endomorphin-1-and endomorphin-2-induced antinociception in the mouse

J Pharmacol Exp Ther. 2002 Nov;303(2):867-73. doi: 10.1124/jpet.102.038810.

Abstract

Intrathecal (i.t.) pretreatments with antisense oligodeoxynucleotides (AS ODNs) against exon-1, -4, or -8 of mu-opioid receptor clone (MOR-1) to knockdown different variants of MOR-1 on the antinociception induced by endomorphin-1, enomorphin-2, or [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) given i.t. were investigated in male CD-1 mice. The antinociception was measured with the tail-flick test. AS ODNs against exon-1 (5 microg) given i.t. once daily for 3 days attenuated the antinociception induced by endomorphin-1 and endomorphin-2 with the dose-response curves shifted to the right by 4.5- and 5.3-fold, respectively. AS ODNs against exon-4 (5 microg) attenuated the antinociception induced by endomorphin-1 and endomorphin-2 with the dose-response curves shifted to the right by 2.4- and 5.3-fold, respectively. However, AS ODNs against exon-8 (5 microg) attenuated only the antinociception induced by endomorphin-1, but not endomorphin-2 with the dose-response curves shifted to the right by 3.9- and 1.3-fold, respectively. One more day of pretreatment with antisense probes failed to further reduce the antinociception. The antinociception induced by DAMGO was attenuated by i.t. pretreatment with AS ODNs directed against exon-1, and, to a lesser extent, by AS ODNs directed against exon-8. The mismatch AS ODNs against respective exon-1, -4, and -8 failed to exert significant effects. The selective actions of antisense probes directed against different exons of the MOR-1 in attenuating the antinociception induced by endomorphin-1, endomorphin-2, and DAMGO suggest that multiple splice variants of the MOR-1 exist and support the view that different subtypes of mu-opioid receptors are involved in antinociception induced by endomorphin-1, endomorphin-2, and DAMGO.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Analgesics, Opioid / administration & dosage
  • Analgesics, Opioid / pharmacology*
  • Animals
  • Dose-Response Relationship, Drug
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)- / pharmacology
  • Exons / genetics
  • Injections, Spinal
  • Male
  • Mice
  • Oligonucleotides, Antisense / administration & dosage
  • Oligonucleotides, Antisense / pharmacology*
  • Oligopeptides / administration & dosage
  • Oligopeptides / pharmacology*
  • Pain Measurement / drug effects
  • Reaction Time / drug effects
  • Receptors, Opioid, mu / drug effects*
  • Receptors, Opioid, mu / genetics
  • Spinal Cord / physiology*

Substances

  • Analgesics, Opioid
  • Oligonucleotides, Antisense
  • Oligopeptides
  • Receptors, Opioid, mu
  • endomorphin 1
  • Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
  • endomorphin 2