Properties of linkage disequilibrium (LD) maps

Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17004-7. doi: 10.1073/pnas.012672899. Epub 2002 Dec 16.

Abstract

A linkage disequilibrium map is expressed in linkage disequilibrium (LD) units (LDU) discriminating blocks of conserved LD that have additive distances and locations monotonic with physical (kb) and genetic (cM) maps. There is remarkable agreement between LDU steps and sites of meiotic recombination in the one body of data informative for crossing over, and good agreement with another method that defines blocks without assigning an LD location to each marker. The map may be constructed from haplotypes or diplotypes, and efficiency estimated from the empirical variance of LD is substantially greater for the rho metric based on evolutionary theory than for the absolute correlation r, and for the LD map compared with its physical counterpart. The empirical variance is nearly three times as great for the worst alternative (r and kb map) as for the most efficient approach (rho and LD map). According to the empirical variances, blocks are best defined by zero distance between included markers. Because block size is algorithm-dependent and highly variable, the number of markers required for positional cloning is minimized by uniform spacing on the LD map, which is estimated to have approximately equal 1 LDU per locus, but with much variation among regions. No alternative representation of linkage disequilibrium (some of which are loosely called maps) has these properties, suggesting that LD maps are optimal for positional cloning of genes determining disease susceptibility.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosome Mapping*
  • Genetic Predisposition to Disease
  • Haplotypes
  • Humans
  • Linkage Disequilibrium / genetics*
  • Recombination, Genetic