Calpain cleavage of the B isoform of Ins(1,4,5)P3 3-kinase separates the catalytic domain from the membrane anchoring domain

Biochem J. 2003 Nov 1;375(Pt 3):643-51. doi: 10.1042/BJ20030505.

Abstract

Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] is one of the key intracellular second messengers in cells and mobilizes Ca2+ stores in the ER (endoplasmic reticulum). Ins(1,4,5)P3 has a short half-life within the cell, and is rapidly metabolized through one of two pathways, one of which involves further phosphorylation of the inositol ring: Ins(1,4,5)P3 3-kinase (IP3-3K) phosphorylates Ins(1,4,5)P3, resulting in the formation of inositol (1,3,4,5)-tetrakisphosphate [Ins(1,3,4,5)P4]. There are three known isoforms of IP3-3K, designated IP3-3KA, IP3-3KB and IP3-3KC. These have differing N-termini, but highly conserved C-termini harbouring the catalytic domain. The three IP3-3K isoforms have different subcellular locations and the B-kinase is uniquely present in both cytosolic and membrane-bound pools. As it is the N-terminus of the B-kinase that differs most from the A- and C-kinases, we have hypothesized that this portion of the protein may be responsible for membrane localization. Although there are no known membrane-targeting protein motifs within the sequence of IP3-3KB, it is found to be tightly associated with the ER membrane. Here, we show that specific regions of the N-terminus of IP3-3KB are necessary and sufficient for efficient membrane localization of the protein. We also report that, in the presence of Ca2+, the kinase domain of IP3-3KB is cleaved from the membrane-anchoring region by calpain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites / genetics
  • Calpain / metabolism*
  • Catalytic Domain / genetics
  • Cell Membrane / metabolism
  • Cytosol / metabolism
  • Green Fluorescent Proteins
  • HeLa Cells
  • Humans
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Luminescent Proteins / genetics
  • Luminescent Proteins / metabolism
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Microscopy, Fluorescence
  • Molecular Sequence Data
  • Phosphotransferases (Alcohol Group Acceptor) / genetics
  • Phosphotransferases (Alcohol Group Acceptor) / metabolism*
  • Rats
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism

Substances

  • Isoenzymes
  • Luminescent Proteins
  • Membrane Proteins
  • Recombinant Fusion Proteins
  • Green Fluorescent Proteins
  • Phosphotransferases (Alcohol Group Acceptor)
  • Inositol 1,4,5-trisphosphate 3-kinase
  • Calpain