Effects of RNase L mutations associated with prostate cancer on apoptosis induced by 2',5'-oligoadenylates

Cancer Res. 2003 Oct 15;63(20):6795-801.

Abstract

The RNASEL gene, a strong candidate for the hereditary prostate cancer 1 allele (HPC1), encodes a single-stranded specific endoribonuclease involved in the antiviral actions of IFNs. RNase L is activated enzymatically after binding to unusual 5'-phosphorylated, 2',5'-linked oligoadenylates (2-5A). Biostable phosphorothioate analogues of 2-5A were synthesized chemically and used to study the effects of naturally occurring mutations and polymorphisms in RNASEL. The 2-5A analogues induced RNase L activity and caused apoptosis in cultures of late-stage, metastatic human prostate cancer cell lines DU145, PC3, and LNCaP. However, DU145 and PC3 cells were more sensitive to 2-5A than LNCaP cells, which are heterozygous for an inactivating deletion mutation in RNase L. The RNase activities of missense variants of human RNase L were compared after expression in a mouse RNase L(-/-) cell line. Several variants (G59S, I97L, I220V, G296V, S322F, Y529C, and D541E) produced similar levels of RNase L activity as wild-type enzyme. In contrast, the R462Q variant, previously implicated in up to 13% of unselected prostate cancer cases, bound 2-5A at wild-type levels but had a 3-fold decrease in RNase activity. The deficiency in RNase L(R462Q) activity was correlated with a reduction in its ability to dimerize into a catalytically active form. Furthermore, RNase L(R462Q) was deficient in causing apoptosis in response to 2-5A consistent with its possible role in prostate cancer development. Our findings support the notion that RNASEL mutations and some variants allow tumor cells to escape a potent apoptotic pathway.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenine Nucleotides / pharmacology*
  • Apoptosis / drug effects*
  • Apoptosis / genetics
  • Bone Neoplasms / secondary
  • Brain Neoplasms / secondary
  • Cell Line, Tumor
  • Dimerization
  • Endoribonucleases / genetics*
  • Enzyme Activation / drug effects
  • Humans
  • Lymphatic Metastasis
  • Male
  • Mutation, Missense*
  • Oligoribonucleotides / pharmacology*
  • Prostatic Neoplasms / drug therapy
  • Prostatic Neoplasms / enzymology*
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / pathology

Substances

  • Adenine Nucleotides
  • Oligoribonucleotides
  • 2',5'-oligoadenylate
  • Endoribonucleases
  • 2-5A-dependent ribonuclease