Global, synchronous oscillations in cytosolic calcium and adherence in bradykinin-stimulated Madin-Darby canine kidney cells

Acta Physiol Scand. 2004 Apr;180(4):335-46. doi: 10.1111/j.1365-201X.2004.01261.x.

Abstract

Aims and methods: Intercellular Ca2+ oscillations are a universal mode of signalling in both excitable and non-excitable cells. Here, we study the relationship between Ca2+ signalling and coherent changes in adhesion properties by measuring the transepithelial impedance across bradykinin-stimulated Madin-Darby canine kidney (MDCK) cell layers grown on a microelectrode. During hormone stimulation, the impedance is found to oscillate, reflecting that the cells undergo morphological/adhesive alterations with high spatio-temporal organization. The experiments are supplemented with parallel, digital imaging fluorescence microscopy of bradykinin-induced single-cell Ca2+ oscillations.

Results: In agreement with previous experiments, MDCK cells are found to elicit synchronous, multicellular Ca2+ oscillations in response to hormone stimulus. The periods of the Ca2+ oscillations and the electrical fluctuations are found to coincide. Further, blocking of gap junctions by 18alpha-glycyrrhetinic acid causes a loss of synchrony in Ca2+ signals and inhibition of impedance oscillations, emphasizing the importance of gap junctions in the signal transduction process.

Conclusion: Based on these observations it is concluded that the co-ordinated adhesive changes in MDCK cells are a direct consequence of synchronized Ca2+ oscillations. Calcium signalling represents an efficient way of organizing physiological responses in a tissue. A possible functional implication of the structural changes might be to modulate transportation of various substances across the cell sheet.

MeSH terms

  • Animals
  • Bradykinin / pharmacology*
  • Calcium / metabolism*
  • Calcium Signaling / physiology
  • Cell Adhesion / physiology*
  • Cell Line
  • Cell Membrane / physiology
  • Cytosol / metabolism*
  • Dogs
  • Electric Impedance
  • Gap Junctions / drug effects
  • Glycyrrhetinic Acid / analogs & derivatives
  • Glycyrrhetinic Acid / pharmacology
  • Kidney / cytology
  • Signal Transduction / physiology

Substances

  • 18alpha-glycyrrhetinic acid
  • Glycyrrhetinic Acid
  • Bradykinin
  • Calcium