Rapid prototyping of thermoset polyester microfluidic devices

Anal Chem. 2004 Aug 15;76(16):4697-704. doi: 10.1021/ac0498922.

Abstract

This paper presents a simple procedure for the fabrication of thermoset polyester (TPE) microfluidic systems and discusses the properties of the final devices. TPE chips are fabricated in less than 3 h by casting TPE resin directly on a lithographically patterned (SU-8) silicon master. Thorough curing of the devices is obtained through the combined use of ultraviolet light and heat, as both an ultraviolet and a thermal initiator are employed in the resin mixture. Features on the order of micrometers and greater are routinely reproduced using the presented procedure, including complex designs and multilayer features. The surface of TPE was characterized using contact angle measurements and X-ray photoelectron spectroscopy (XPS). Following oxygen plasma treatment, the hydrophilicity of the surface of TPE increases (determined by contact angle measurements) and the proportion of oxygen-containing functional groups also increases (determined by XPS), which indicates a correlated increase in the charge density on the surface. Native TPE microchannels support electroosmotic flow (EOF) toward the cathode, with an average electroosmotic mobility of 1.3 x 10(-4) cm(2) V(-1) s(-1) for a 50-microm square channel (20 mM borate at pH 9); following plasma treatment (5 min at 30 W and 0.3 mbar), EOF is enhanced by a factor of 2. This enhancement of the EOF from plasma treatment is stable for days, with no significant decrease noted during the 5-day period that we monitored. Using plasma-treated TPE microchannels, we demonstrate the separation of a mixture of fluorescein-tagged amino acids (glycine, glutamic acid, aspartic acid). TPE devices are up to 90% transparent (for approximately 2-mm-thick sample) to visible light (400-800 nm). The compatibility of TPE with a wide range of solvents was tested over a 24-h period, and the material performed well with acids, bases, alcohols, cyclohexane, n-heptane, and toluene but not with chlorinated solvents (dichloromethane, chloroform).

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Microfluidic Analytical Techniques / methods*
  • Microscopy, Electron, Scanning / methods
  • Osmosis
  • Polyesters
  • Silicon*
  • Surface Properties

Substances

  • Polyesters
  • Silicon