Determination of the maximum temperature at the center of an optically thick laser-induced plasma using self-reversed spectral lines

Appl Spectrosc. 2004 Sep;58(9):1023-31. doi: 10.1366/0003702041959398.

Abstract

A method of temperature measurement based on the model developed by Bartels of an optically thick inhomogeneous plasma was applied to a laser plasma induced on a target containing barium. The method involves the intensity ratio measurement of two self-reversed Ba(II) lines. The temperature thus determined corresponds to the maximum temperature in the plasma center. The plasma temperature was measured for delay times between 0.5 micros and 10 micros in two spectrometer operating modes: the scanning mode and the dual-wavelength mode, the latter resulting in better precision. A detailed analysis of experimental errors was performed. The error strongly depended on the wavelength separation of the lines used. The most accurate results were obtained for the largest line separation. Using one line in the UV and the other in the visible region, the relative error was 2-6% for temperatures between 8000 K and 20 000 K. The distribution of the plasma temperature along the plasma height was measured in the same delay time range. The temperature was found to be uniform along the plasma vertical axis, thus confirming the plasma cylindrical symmetry.