Fermi surface topology of Ca1.5Sr0.5RuO4 determined by angle-resolved photoelectron spectroscopy

Phys Rev Lett. 2004 Oct 22;93(17):177007. doi: 10.1103/PhysRevLett.93.177007. Epub 2004 Oct 21.

Abstract

We report angle-resolved photoelectron spectroscopy results of the Fermi surface of Ca1.5Sr0.5RuO4, which is at the boundary of magnetic/orbital instability in the phase diagram of the Ca-substituted Sr ruthenates. Three t(2g) energy bands and the corresponding Fermi surface sheets are observed, which are also present in the Ca-free Sr2RuO4. We find that while the Fermi surface topology of the alpha,beta (d(yz,zx)) sheets remains almost the same in these two materials, the gamma (d(xy)) sheet exhibits a holelike Fermi surface in Ca1.5Sr0.5RuO4 in contrast to being electronlike in Sr2RuO4. Our observation of all three volume conserving Fermi surface sheets clearly demonstrates the absence of orbital-selective Mott transition, which was proposed theoretically to explain the unusual transport and magnetic properties in Ca1.5Sr0.5RuO4.