Multicomponent cycloadditions: the four-component [5+1+2+1] cycloaddition of vinylcyclopropanes, alkynes, and CO

J Am Chem Soc. 2005 Mar 9;127(9):2836-7. doi: 10.1021/ja042728b.

Abstract

Prompted by the view that intermediates of transition metal-catalyzed reactions could be intercepted by one or more additional components, studies in our laboratory have led to the design and development of new three-component [5+2+1], [4+2+1], and [2+2+1] cycloadditions. These continuing studies have now led to the identification of a fundamentally new four-component [5+1+2+1] cycloaddition reaction of vinylcyclopropanes, alkynes and CO, yielding hydroxyindanone products in generally good yields. Terminal alkynes bearing aryl or alkyl groups are tolerated well. Substitution at any position of the VCP leads predictably to substituted hydroxyindanone products. Using a bis-alkynyl substrate, the reaction can be carried out bi-directionally, forming 10 C-C bonds and four new rings from seven components in a single, operationally simple process.