Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors

Anal Chem. 2005 Sep 1;77(17):5735-41. doi: 10.1021/ac050957q.

Abstract

We have developed a highly specific sensing system for platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFR) that uses gold nanoparticles (GNPs). We synthesized GNPs modified with an aptamer (Apt-GNPs) that is specific to PDGFs and used them to detect PDGFs by monitoring the changes in the color and extinction of the Apt-GNPs that occur as a result of aggregation. The color of the Apt-GNPs changes from red to purple at low concentrations (<400 nM), but changes only slightly at higher concentrations (>400 nM). We found that the sensitivity of the Apt-GNPs for the three PDGFs is highly salt-dependent, with an optimum condition of 200 mM NaCl. We obtained biphasic curves when plotting of the ratios of the extinction coefficients of the Apt-GNPs at 650 and 530 nm against the concentrations of PDGF-AA at various concentrations of Apt-GNPs. The linear ranges of the increases and decreases in this extinction ratio are 2.5-10 and 10-20 nM, respectively, for 0.42 nM Apt-GNPs and 25-75 and 75-200 nM, respectively, for 8.4 nM Apt-GNPs. When using 8.4 nM Apt-GNPs, the corresponding linear ranges of the increases and decreases in this extinction ratio are 15-100 and 100-400 nM, respectively, for PDGF-AB and 35-150 and 150-400 nM, respectively, for PDGF-BB. In addition, we have developed a homogeneous assay to detect the PDGF receptor-beta (PDGFR-beta) at concentrations as low as 3.2 nM, on the basis of the competition between the Apt-GNPs and PDGFR-beta for PDGF-BB. The results we present in this paper imply that there are practical applications of Apt-GNPs in protein analysis and cancer diagnosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aptamers, Nucleotide / chemistry*
  • Base Sequence
  • Colorimetry / methods*
  • Gold / chemistry*
  • Humans
  • Microscopy, Electron, Transmission
  • Molecular Structure
  • Nanoparticles / chemistry*
  • Nanoparticles / ultrastructure
  • Platelet-Derived Growth Factor / analysis*
  • Platelet-Derived Growth Factor / chemistry
  • Receptors, Platelet-Derived Growth Factor / analysis*
  • Receptors, Platelet-Derived Growth Factor / chemistry
  • Receptors, Platelet-Derived Growth Factor / metabolism

Substances

  • Aptamers, Nucleotide
  • Platelet-Derived Growth Factor
  • Gold
  • Receptors, Platelet-Derived Growth Factor