Relative intensity of muscular contraction during shivering

J Appl Physiol (1985). 1992 Jun;72(6):2336-42. doi: 10.1152/jappl.1992.72.6.2336.

Abstract

The intensity of cold-induced shivering, quantified by surface electromyography (EMG) and then expressed as a function of the maximal myoelectrical activity (integrated EMG) obtained during a maximum voluntary contraction (MVC), was examined in this study in individuals classified by body fat. In addition, the relationship between shivering and metabolic rate (MR) and the relative contribution of various muscle groups to total heat production were studied. Ten seminude male volunteers, 5 LEAN (less than 11% body fat) and 5 NORM (greater than 15% body fat) were exposed to 10 degrees C air for 2 h. EMG of six muscle groups (pectoralis major, rectus abdominis, rectus femoris, gastrocnemius, biceps brachii, and brachioradialis) was measured and compared with the EMG of each muscle's MVC. A whole body index of shivering, determined from the mass-weighted intensity of shivering of each muscle group, was correlated with MR. After the initial few minutes of exposure, only the pectoralis major, rectus femoris, and biceps brachii continued to increase their intensity of shivering. Shivering intensity was higher in the central muscles, ranging from 5 to 16% of MVC compared with that in the peripheral muscles, which ranged from 1 to 4% of MVC. Shivering intensities were similar in the peripheral muscles for the LEAN and NORM groups, whereas differences occurred in the trunk muscles for the pectoralis major and rectus abdominis. The whole body index of shivering correlated significantly with each individual's increase in MR (r = 0.63-0.97).(ABSTRACT TRUNCATED AT 250 WORDS)

MeSH terms

  • Adult
  • Body Temperature Regulation / physiology
  • Cold Temperature / adverse effects
  • Electromyography
  • Humans
  • Male
  • Muscle Contraction / physiology*
  • Shivering / physiology*
  • Thinness / physiopathology