Potential energy surface and product branching ratios for the reaction of dicarbon, C(2)(X(1)Sigma(g)(+)), with methylacetylene, CH(3)CCH(X(1)A(1)): an ab initio/RRKM study

J Phys Chem A. 2006 Feb 23;110(7):2421-33. doi: 10.1021/jp054309m.

Abstract

Ab initio calculations of the potential energy surface for the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction have been carried at the G2M level of theory. The calculations show that the dicarbon molecule in the ground singlet electronic state can add to methylacetylene without a barrier producing a three-member or a four-member ring intermediate, which can rapidly rearrange to the most stable H(3)CCCCCH isomer on the C(5)H(4) singlet surface. This isomer can then lose a hydrogen atom (H) or molecular hydrogen (H(2)) from the CH(3) group with the formation of H(2)CCCCCH and HCCCCCH, respectively. Alternatively, H atom migrations and three-member-ring closure/opening rearrangements followed by H and H(2) losses can lead to other isomers of the C(5)H(3) and C(5)H(2) species. According to the calculated energetics, the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH reaction is likely to be a major source of the C(5)H(3) radicals (in particular, the most stable H(2)CCCCCH and HCCCHCCH isomers, which are relevant to the formation of benzene through the reactions with CH(3)). Among heavy-fragment product channels, only C(3)H(3) + C(2)H and c-C(3)H(2) + C(2)H(2) might compete with C(5)H(3) + H and C(5)H(2) + H(2). RRKM calculations of reaction rate constants and product branching ratios depending on the reactive collision energy showed that the major reaction products are expected to be H(2)CCCCCH + H (64-66%) and HCCCHCCH + H (34-30%), with minor contributions from HCCCCCH + H(2) (1-2%), HCCCHCC + H(2) (up to 1%), C(3)H(3) + C(2)H (up to 1%), and c-C(3)H(2) + C(2)H(2) (up to 0.1%) if the energy randomization is complete. The calculations also indicate that the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction can proceed by direct H-abstraction of a methyl hydrogen to form C(3)H(3) + C(2)H almost without a barrier.