Comparison of Gadolinium-BOPTA and Ferucarbotran-enhanced three-dimensional T1-weighted dynamic liver magnetic resonance imaging in the same patient

Invest Radiol. 2006 Mar;41(3):264-71. doi: 10.1097/01.rli.0000188359.72928.0f.

Abstract

Objectives: We sought to compare signal changes using Ferucarbotran and gadobenate dimeglumine (Gd-BOPTA) in dynamic 3D T1-weighted (T1w) GRE imaging of the liver.

Material and methods: Thirty patients were prospectively included in the study. All patients underwent 2 high-field magnetic resonance (MR) examinations: first with Gd-BOPTA (Gd) and then after a mean interval of 4 days with ferucarbotran (Feru). Dynamic MRI was obtained with a 3D T1w GRE sequence (TR 6.33, TE 2.31, flip angle 20 degrees ). Contrast enhanced scans were assessed before intravenous injection of the contrast agent (precontrast), and postcontrast during the arterial phase (30 seconds), portal venous phase (60 seconds), and equilibrium phase (120 seconds). The signal intensities (SIs) of liver, spleen, aorta, and portal vein were defined by region of interest measurements. Signal intensity changes (SICs) and percentage signal intensity change (PSIC) were calculated using the formulas SIC=(SI pre - SI post)/SI pre and PSIC=SIC x 100%.

Results: Positive signal enhancement was observed after intravenous injection of Feru during all dynamic measurements, whereas the mean SI values were lower compared with Gd. During the portal venous phase the mean SI of Gd was up to a factor of 2.1 higher (portal vein). The widest difference of SIC was observed during the equilibrium phase for liver parenchyma (Gd, 1.03; Feru, 0.24). The dynamic signal courses were similar for liver, portal vein and aorta. Different signal courses were obtained for the spleen.

Conclusions: Feru-enhanced T1w dynamic images demonstrated significant signal increases for liver, vessels, and spleen but overall lower signal intensities than Gd-BOPTA. The dynamic signal courses of ferucarbotran were similar to that of Gd-BOPTA during ll perfusion phases except in the spleen. Thus, it may be possible to detect typical enhancement pattern of focal liver lesions with Feru-enhanced dynamic T1w MRI.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Aged
  • Contrast Media* / pharmacokinetics
  • Dextrans
  • Female
  • Ferrosoferric Oxide
  • Humans
  • Imaging, Three-Dimensional*
  • Iron* / pharmacokinetics
  • Liver Diseases / diagnosis*
  • Magnetic Resonance Imaging / methods*
  • Magnetite Nanoparticles
  • Male
  • Meglumine / analogs & derivatives*
  • Meglumine / pharmacokinetics
  • Middle Aged
  • Organometallic Compounds* / pharmacokinetics
  • Oxides* / pharmacokinetics
  • Prospective Studies
  • Sensitivity and Specificity

Substances

  • Contrast Media
  • Dextrans
  • Magnetite Nanoparticles
  • Organometallic Compounds
  • Oxides
  • gadobenic acid
  • Meglumine
  • Iron
  • ferumoxides
  • Ferrosoferric Oxide