Monte Carlo simulations of polyelectrolytes inside viral capsids

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041921. doi: 10.1103/PhysRevE.73.041921. Epub 2006 Apr 18.

Abstract

Structural features of polyelectrolytes as single-stranded RNA or double-stranded DNA confined inside viral capsids and the thermodynamics of the encapsidation of the polyelectrolyte into the viral capsid have been examined for various polyelectrolyte lengths by using a coarse-grained model solved by Monte Carlo simulations. The capsid was modeled as a spherical shell with embedded charges and the genome as a linear jointed chain of oppositely charged beads, and their sizes corresponded to those of a scaled-down T=3 virus. Counterions were explicitly included, but no salt was added. The encapisdated chain was found to be predominantly located at the inner capsid surface, in a disordered manner for flexible chains and in a spool-like structure for stiff chains. The distribution of the small ions was strongly dependent on the polyelectrolyte-capsid charge ratio. The encapsidation enthalpy was negative and its magnitude decreased with increasing polyelectrolyte length, whereas the encapsidation entropy displayed a maximum when the capsid and polyelectrolyte had equal absolute charge. The encapsidation process remained thermodynamically favorable for genome charges ca. 3.5 times the capsid charge. The chain stiffness had only a relatively weak effect on the thermodynamics of the encapsidation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Capsid / chemistry*
  • Capsid / metabolism
  • Computer Simulation
  • DNA, Viral / chemistry*
  • DNA, Viral / metabolism
  • Elasticity
  • Electrolytes / chemistry
  • Electrolytes / metabolism
  • Models, Biological*
  • Models, Chemical*
  • Models, Statistical
  • Monte Carlo Method
  • Nucleic Acid Conformation
  • RNA, Viral / chemistry*
  • RNA, Viral / metabolism
  • Static Electricity
  • Stress, Mechanical

Substances

  • DNA, Viral
  • Electrolytes
  • RNA, Viral