Designing solution-processable air-stable liquid crystalline crosslinkable semiconductors

Philos Trans A Math Phys Eng Sci. 2006 Oct 15;364(1847):2779-87. doi: 10.1098/rsta.2006.1854.

Abstract

Organic electronics technology, in which at least the semiconducting component of the integrated circuit is an organic material, offers the potential for fabrication of electronic products by low-cost printing technologies, such as ink jet, gravure offset lithography and flexography. The products will typically be of lower performance than those using the present state of the art single crystal or polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal (LC) displays, flexible organic light emitting diode displays, low frequency radio frequency identification tag and other low performance electronics. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes the development of reactive mesogen semiconductors, which form large crosslinked LC domains on polymerization within mesophases. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed to facilitate charge transport and provide good oxidative stability, were prepared and their liquid crystalline properties evaluated. The organization and alignment of the mesogens, both before and after crosslinking, were probed by grazing incidence wide-angle X-ray scattering of thin films. Both time-of-flight and field effect transistor devices were prepared and their electrical characterization reported.