Macroion correlation effects in electrostatic screening and thermodynamics of highly charged colloids

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051408. doi: 10.1103/PhysRevE.74.051408. Epub 2006 Nov 28.

Abstract

We study macroion correlation effects on the thermodynamics of highly charged colloidal suspensions using a mean-field theory and primitive model computer simulations. We suggest a simple way to include the macroion correlations into the mean-field theory as an extension of the renormalized jellium model of Trizac and Levin [Phys. Rev. E 69, 031403 (2004)]. The effective screening parameters extracted from our mean-field approach are then used in a one-component model with macroions interacting via a Yukawa-like potential to predict macroion distributions. We find that inclusion of macroion correlations leads to a weaker screening and hence smaller effective macroion charge and lower osmotic pressure of the colloidal dispersion as compared to other mean-field models. This result is supported by comparison to primitive model simulations and experiments for charged macroions in the low-salt regime, where the macroion correlations are expected to be significant.