Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 1):041504. doi: 10.1103/PhysRevE.75.041504. Epub 2007 Apr 26.

Abstract

We investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear by means of three-dimensional lattice Boltzmann simulations. We show that the growth of individual fluid domains can be arrested by adding surfactant to the system, thus forming a bicontinuous microemulsion. We demonstrate that the maximum domain size and the time of arrest depend linearly on the concentration of amphiphile molecules. In addition, we find that for a well-defined threshold value of amphiphile concentration, the maximum domain size and time of complete arrest do not change. For systems under constant and oscillatory shear we analyze domain growth rates in directions parallel and perpendicular to the applied shear. We find a structural transition from a sponge to a lamellar phase by applying a constant shear and the occurrence of tubular structures under oscillatory shear. The size of the resulting lamellae and tubes depends strongly on the amphiphile concentration, shear rate, and shear frequency.