Increase of platinum group element concentrations in soils and airborne dust in an urban area in Germany

Sci Total Environ. 2007 Dec 15;388(1-3):121-7. doi: 10.1016/j.scitotenv.2007.07.064. Epub 2007 Sep 19.

Abstract

Since 1993, all new cars sold in the European Union had to be fitted with catalytic converters. Undoubtedly, these measures brought about a great progress concerning traffic emission controls. However, this technology also led to new emissions. A rapid accumulation of the catalytic active noble metals Pt, Pd, and Rh in the environment was observed and concern arose about potential environmental and health risks. This work aimed at a contribution to a monitoring of platinum group element (PGE) emission and accumulation by comparing analytical data, all generated in 1999 and in 2005 in an urban area in Germany. Oriented at the 1999 sampling strategy, soil and airborne dust samples were taken in 2005 at the same sampling sites located mainly close to heavily used roads in the region of Braunschweig. For the enrichment of the analytes, conditioned soil samples as well as loaded glass fiber filters from air sampling were transferred to the nickel sulphide fire assay. For analyses, the ICP-MS technique was applied. High Pt, Pd, and Rh concentrations were detected especially in top soil layers (0-2 cm) directly at the roadsides or on center strips. At one road outside the city, where traffic moved with a constant speed of about 80 km/h, maximum concentrations in soil were found to be 50.4 microg/kg for Pt, 43.3 microg/kg for Pd, and 10.7 microg/kg for Rh. PGE concentrations were the highest close to that road and exponentially declined with growing distance. At a second road, where vehicles run with a constant speed of 50 km/h, the highest concentrations were detected in the center strip soil: 88.9 microg/kg (Pt), 77.8 microg/kg (Pd), and 17.6 microg/kg (Rh). At a third crowded street in the centre of Braunschweig with stop and go traffic, the highest soil concentrations were determined, namely 261 microg/kg for Pt, 124 microg/kg for Pd and 38.9 microg/kg for Rh. The sampling of airborne dust at this roadside revealed for Pt 159 pg/m(3) air or 1730 microg/kg dust, for Pd 37.8 pg/m(3) air or 410 microg/kg dust, and for Rh 10.0 pg/m(3) air or 110 microg/kg dust. A comparison of analytical results of 2005 with those of 1999 revealed a distinct increase of PGE concentrations in soils closely along heavy traffic roads by a factor of 2.1 to 8.9; once even a factor of 15 was determined. The findings also document, that especially Pt and Rh concentrations were elevated in airborne dust.

MeSH terms

  • Air Pollutants / analysis*
  • Cities
  • Dust / analysis*
  • Environmental Monitoring
  • Germany
  • Palladium / analysis*
  • Platinum / analysis*
  • Rhodium / analysis*
  • Soil Pollutants / analysis*
  • Vehicle Emissions

Substances

  • Air Pollutants
  • Dust
  • Soil Pollutants
  • Vehicle Emissions
  • Platinum
  • Palladium
  • Rhodium