Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes

J Hazard Mater. 2008 Jun 15;154(1-3):175-83. doi: 10.1016/j.jhazmat.2007.10.008. Epub 2007 Oct 9.

Abstract

The synthesis of geopolymer matrixes from coal (co-)combustion fly ashes as the sole source of silica and alumina has been studied in order to assess both their capacity to immobilise the potentially toxic elements contained in these coal (co-)combustion by-products and their suitability to be used as cement replacements. The geopolymerisation process has been performed using (5, 8 and 12 M) NaOH solutions as activation media and different curing time (6-48 h) and temperature (40-80 degrees C) conditions. Synthesised geopolymers have been characterised with regard to their leaching behaviour, following the DIN 38414-S4 [DIN 38414-S4, Determination of leachability by water (S4), group S: sludge and sediments. German standard methods for the examination of water, waste water and sludge. Institut für Normung, Berlin, 1984] and NEN 7375 [NEN 7375, Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. Netherlands Normalisation Institute, Delft, 2004] procedures, and to their structural stability by means of compressive strength measurements. In addition, geopolymer mineralogy, morphology and structure have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that synthesised geopolymer matrixes were only effective in the chemical immobilisation of a number of elements of environmental concern contained in fly ashes, reducing (especially for Ba), or maintaining their leachable contents after the geopolymerisation process, but not for those elements present as oxyanions. Physical entrapment does not seem either to contribute in an important way, in general, to the immobilisation of oxyanions. The structural stability of synthesised geopolymers was mainly dependent on the glass content of fly ashes, attaining at the optimal activation conditions (12 M NaOH, 48 h, 80 degrees C) compressive strength values about 60 MPa when the fly ash glass content was higher than 90%.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon*
  • Coal Ash
  • Coal*
  • Compressive Strength
  • Construction Materials*
  • Industrial Waste*
  • Microscopy, Electron, Scanning
  • Particulate Matter*
  • Polymers / chemistry
  • Power Plants
  • Sodium Hydroxide / chemistry
  • Spectroscopy, Fourier Transform Infrared
  • Waste Management / methods*
  • X-Ray Diffraction

Substances

  • Coal
  • Coal Ash
  • Industrial Waste
  • Particulate Matter
  • Polymers
  • Sodium Hydroxide
  • Carbon