Free radical destruction of beta-blockers in aqueous solution

Environ Sci Technol. 2008 Feb 15;42(4):1256-61. doi: 10.1021/es702245n.

Abstract

Many pharmaceutical compounds and metabolites are currently found in surface and ground waters which indicates their ineffective removal by conventional water treatment technologies. Advanced oxidation/reduction processes (AO/ RPs) are alternatives to traditional water treatment, which utilize free radical reactions to directly degrade chemical contaminants. This study reports the absolute rate constants for reaction of three beta-blockers (atenolol, metoprolol, and propranolol) with the two major AO/RP radicals; the hydroxyl radical (*OH) and hydrated electron ((e-)aq). The bimolecular reaction rate constants for *OH are (7.05 +/- 0.27) x 10(9), (8.39 +/- 0.06) x 10(9), and (1.07 +/- 0.02) x 10(10), and for (e-)aq they are (5.91 +/- 0.21) x 10(8), (1.73 +/- 0.03) x 10(8), and (1.26 +/- 0.02) x 10(10), respectively. Transient spectra were observed for the intermediate radicals produced by hydroxyl radical reactions. In addition, preliminary degradation mechanisms and major products were elucidated using 60Co gamma-irradiation and LC-MS. These data are required for both evaluating the potential use of AO/RPs for the destruction of these compounds and for studies of their fate and transport in surface waters where radical chemistry may be important in assessing their lifetime.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adrenergic beta-Antagonists / chemistry*
  • Free Radicals / chemistry*
  • Kinetics
  • Solutions
  • Water

Substances

  • Adrenergic beta-Antagonists
  • Free Radicals
  • Solutions
  • Water