Increased interfacial thickness of the NaF, NaCl and NaBr salt aqueous solutions probed with non-resonant surface second harmonic generation (SHG)

Phys Chem Chem Phys. 2008 Aug 28;10(32):4920-31. doi: 10.1039/b806362a. Epub 2008 Jun 20.

Abstract

Specific ion effects on the nonlinear optical response from the water molecules at the air/sodium halide solution interfaces are measured using non-resonant surface second harmonic generation (SHG). Procedures have been developed to monitor and remove the impurities in the salt solution samples to ensure measurement of small changes in the SHG signal. Quantitative polarization analysis of the measured SHG data indicated that the average orientation of the interfacial water molecules changed only slightly around 40 degrees with the increase of the bulk concentration of the three sodium halides, namely NaF, NaCl and NaBr, from that of the neat air/water interface. The observed significant SHG signal increase with the bulk salt concentration is attributed to the overall increase of the thickness of the interfacial water molecular layer, following the order of NaBr > NaCl approximately NaF. The absence of the electric-field-induced SHG (EFISHG) effect indicated that the electric double layer at the salt aqueous solution interface is much weaker than that predicted from the molecular dynamics (MD) simulations. These results provided quantitative data to the specific anion effects on the interfacial water molecules of the electrolyte aqueous solution, not only for the larger and more polarizable Br(-) anion, but also for the smaller and less polarizable F(-) and Cl(-) anions.