Neural correlates of age-related reduction in visual motion priming

Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2009 Mar;16(2):164-82. doi: 10.1080/13825580802348588.

Abstract

Previously we reported that priming of visual motion perception is reduced in older adults compared to younger adults (Jiang, Greenwood, & Parasuraman, 1999, Psychology and Aging, 14(4), 619; Jiang, Luo, & Parasuraman, 2002b, Neuropsychology, 16(2), 140). To examine the neural mechanisms underlying this age-related effect, event-related brain potentials (ERPs) were recorded during perceptual judgments of motion directions by younger and older adults in two experiments. When judging single-step motion, both younger and older adults evoked significantly larger ERP late positive component (LPC) responses to unambiguous motion compared to LPC responses elicited by ambiguous motion. In contrast, compared to the younger adults, the older adults evoked comparable but delayed ERP responses to single motion steps. In the second experiment the younger and older groups judged the directions of two successive motion-steps (either motion priming or motion reversals). Under short (200-400 ms) stimulus onset asynchrony (SOA), the difference between the ERP responses to priming and reversal conditions was significantly larger for the younger than for the older adults. This study provides the first electrophysiological evidence that brain aging leads to delayed processing of single motion direction and visual motion priming as early as 100 ms in the early visual cortex. Age-related changes in strength and temporal characteristics of neural responses in temporal-parietal regions were particularly pronounced in older adults when successive motion signals are placed closely in time, within 400 ms.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aging / physiology*
  • Brain / physiology*
  • Electroencephalography
  • Evoked Potentials
  • Humans
  • Judgment / physiology
  • Motion Perception / physiology*
  • Young Adult