Differences in cerebral blood flow between alpha-stat and pH-stat management are eliminated during periods of decreased systemic flow and pressure. A study during cardiopulmonary bypass in rabbits

Anesthesiology. 1991 Jun;74(6):1096-102. doi: 10.1097/00000542-199106000-00018.

Abstract

Prior reports suggest cerebral blood flow (CBF) responses to changing bypass (systemic) flow rates may differ between alpha-stat and pH-stat management. To compare the effect of blood gas management upon CBF responses to changing systemic flow and pressure, 15 New Zealand White rabbits, anesthetized with fentanyl and diazepam, underwent nonpulsatile cardiopulmonary bypass at 25 degrees C. One group of animals (n = 8) was randomized to alpha-stat blood gas management that maintained arterial carbon dioxide tension (PaCO2) approximately 40 mmHg when measured at 37 degrees C. A second group (n = 7) was managed with pH-stat technique, maintaining PaCO2 approximately 40 mmHg when corrected to the animal's actual temperature. Bypass was initiated at a flow rate of 100 ml.kg-1.min-1 and, after approximately 20 min, control hemodynamic and CBF measurements (radioactive microspheres) were made. Thereafter, bypass flow rate was changed in random order at 15-min intervals to 50, 70, and 100 ml.kg-1.min-1. CBF and hemodynamic measurements were repeated at the end of each period of altered bypass flow. Groups differed significantly with respect to both pHa and PaCO2. There were no significant differences between groups with respect to bypass flow rate, mean arterial pressure (MAP), central venous pressure, temperature, hematocrit, arterial oxygen tension (PaCO2), or bypass duration at any measurement point. MAP decreased significantly, from approximately 80 to approximately 65 mmHg with decreasing bypass flow (P = 0.0001). Over the entire range of bypass flows, CBF decreased with decreasing bypass flow (P = 0.001), and the degree of change was equivalent among regions and between groups.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carbon Dioxide / blood*
  • Cardiopulmonary Bypass*
  • Cerebrovascular Circulation / physiology*
  • Hemodynamics / physiology*
  • Partial Pressure
  • Rabbits

Substances

  • Carbon Dioxide