The fusion pore and vesicle cargo discharge modulation

Ann N Y Acad Sci. 2009 Jan:1152:135-44. doi: 10.1111/j.1749-6632.2008.04007.x.

Abstract

Exocytosis, the merger of the vesicle membrane with the plasma membrane, is thought to mediate the release of hormones and neurotransmitters from secretory vesicles. The work of Bernard Katz and colleagues decades ago considered that vesicle cargo discharge initially requires the delivery of secretory vesicles to the plasma membrane where vesicles dock and are primed for fusion with the plasma membrane. Then, upon stimulation, the vesicle and the plasma membranes fuse to form a transient fusion pore through which cargo molecules diffuse out of the vesicle lumen into the extracellular space. Katz and colleagues considered this process to occur in an all-or-none fashion. However, recent studies show that this may not be so simple. The aim of this overview is to highlight the novel findings that indicate that fusion pores are subject to regulations, which affect the release competence of a single vesicle. Here we discuss the elementary properties of spontaneous and stimulated peptidergic vesicle discharge, which appears to be modulated, at least in pituitary lactotrophs, by fusion pore conductance (pore diameter) and fusion pore gating (kinetics).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Calcium / metabolism
  • Exocytosis
  • Intracellular Membranes / metabolism*
  • Kinetics
  • Peptides / metabolism
  • Porosity

Substances

  • Peptides
  • Calcium