Targeting GIPC/synectin in pancreatic cancer inhibits tumor growth

Clin Cancer Res. 2009 Jun 15;15(12):4095-103. doi: 10.1158/1078-0432.CCR-08-2837. Epub 2009 Jun 9.

Abstract

Purpose: Various studies have shown the importance of the GAIP interacting protein, COOH-terminus (GIPC, also known as Synectin) as a central adaptor molecule in different signaling pathways and as an important mediator of receptor stability. GIPC/Synectin is associated with different growth-promoting receptors such as insulin-like growth factor receptor I (IGF-IR) and integrins. These interactions were mediated through its PDZ domain. GIPC/Synectin has been shown to be overexpressed in pancreatic and breast cancer. The goal of this study was to show the importance of GIPC/Synectin in pancreatic cancer growth and to evaluate a possible therapeutic strategy by using a GIPC-PDZ domain inhibitor. Furthermore, the effect of targeting GIPC on the IGF-I receptor as one of its associated receptors was tested.

Experimental design: The in vivo effects of GIPC/Synectin knockdown were studied after lentiviral transduction of luciferase-expressing pancreatic cancer cells with short hairpin RNA against GIPC/Synectin. Additionally, a GIPC-PDZ--targeting peptide was designed. This peptide was tested for its influence on pancreatic cancer growth in vitro and in vivo.

Results: Knockdown of GIPC/Synectin led to a significant inhibition of pancreatic adenocarcinoma growth in an orthotopic mouse model. Additionally, a cell-permeable GIPC-PDZ inhibitor was able to block tumor growth significantly without showing toxicity in a mouse model. Targeting GIPC was accompanied by a significant reduction in IGF-IR expression in pancreatic cancer cells.

Conclusions: Our findings show that targeting GIPC/Synectin and its PDZ domain inhibits pancreatic carcinoma growth and is a potential strategy for therapeutic intervention of pancreatic cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / antagonists & inhibitors*
  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Animals
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Female
  • Gene Knockdown Techniques
  • Humans
  • Integrins / metabolism
  • Mice
  • Mice, Nude
  • Oligopeptides / pharmacology*
  • PDZ Domains* / drug effects
  • Pancreatic Neoplasms / drug therapy*
  • Pancreatic Neoplasms / metabolism*
  • Pancreatic Neoplasms / pathology
  • Receptor, IGF Type 1 / metabolism
  • Signal Transduction

Substances

  • Adaptor Proteins, Signal Transducing
  • Antineoplastic Agents
  • GIPC1 protein, human
  • Integrins
  • Oligopeptides
  • Receptor, IGF Type 1