The possible evolutionary role of tumors in the origin of new cell types

Med Hypotheses. 2010 Jan;74(1):177-85. doi: 10.1016/j.mehy.2009.07.027. Epub 2009 Aug 8.

Abstract

The ability of tumor cells to differentiate in combination with their ability to express genes that are not expressed in normal tissues, may result in the emergence of new cell types in evolution. Tumors may play an evolutionary role by providing conditions (space and resources) for the expression of newly evolving genes. Genetically or epigenetically predetermined tumors at the early stages of progression, benign tumors, and some tumor-like processes in invertebrates and plants, all of which are modes of excess cell growth which provide evolving multicellular organisms with extra cell masses, are considered as potentially evolutionarily meaningful. Malignant tumors at the late stages of progression, however, are not. The preexisting cell types of multicellular organisms had restricted potential for the expression of newly evolving genes. Because of regulation and gene competition, some of the newly evolving genes may stay silent. Multicellular organisms would need excess cell masses for the expression of newly evolving genes. The preexisting cell types cannot provide such excess cell masses because of limitations imposed on the number of possible cell divisions. Tumors could provide the evolving multicellular organisms with the excess cell masses for the expression of newly evolving genes. We suggest that tumors could be a sort of proving ground (or reservoir) for the expression of newly evolving genes that originate in the course of genome evolution in the DNA of germ cells (i.e., not in tumor cells themselves). The case in which the expression of a newly evolving gene in tumors results in the origin of a new function would be associated with the origin of new feedback and regulatory circuits, as in root nodules in legumes and macromelanophores in Xiphophorus fishes. Tumor cells would differentiate, resulting in a new cell type for the given multicellular species. This cell type would be inherited because of epigenomic mechanisms similar to those in preexisting cell types. Populations of tumor-bearing organisms with genetically or epigenetically programmed tumors could represent the transition between established species of organisms at different stages of progressive evolution. Experimental confirmation of the prediction of the hypothesis of evolution by tumor cells differentiation concerning the expression of evolutionarily new genes and/or silent (neutrally evolving) sequences in tumor cells is presented.

MeSH terms

  • Animals
  • Biological Evolution
  • Cell Differentiation
  • Cell Line, Tumor
  • Humans
  • Mice
  • Models, Biological
  • Models, Genetic
  • Neoplasms / genetics*
  • Neoplasms / pathology*
  • Rhizobium / metabolism