Radiofrequency-induced thermal inactivation of Toxoplasma gondii oocysts in water

Zoonoses Public Health. 2010 Feb;57(1):74-81. doi: 10.1111/j.1863-2378.2009.01280.x. Epub 2009 Sep 10.

Abstract

Toxoplasma gondii, a ubiquitous parasitic protozoan, is emerging as an aquatic biological pollutant. Infections can result from drinking water contaminated with environmentally resistant oocysts. However, recommendations regarding water treatment for oocyst inactivation have not been established. In this study, the physical method of radiofrequency (RF) power was evaluated for its ability to inactivate T. gondii oocysts in water. Oocysts were exposed to various RF energy levels to induce 50, 55, 60, 70 and 80 degrees C temperatures maintained for 1 min. Post-treatment oocyst viability was determined by mouse bioassay with serology, immunohistochemistry and in vitro parasite isolation to confirm T. gondii infections in mice. None of the mice inoculated with oocysts treated with RF-induced temperatures of > or =60 degrees C in an initial experiment became infected; however, there was incomplete oocyst activation in subsequent experiments conducted under similar conditions. These results indicate that T. gondii oocysts may not always be inactivated when exposed to a minimum of 60 degrees C for 1 min. The impact of factors such as water heating time, cooling time and the volume of water treated must be considered when evaluating the efficacy of RF power for oocyst inactivation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Hot Temperature
  • Mice
  • Oocysts / radiation effects*
  • Radio Waves*
  • Toxoplasma / isolation & purification
  • Toxoplasma / radiation effects*
  • Toxoplasmosis / prevention & control*
  • Toxoplasmosis, Animal / prevention & control
  • Water / parasitology*
  • Water Supply

Substances

  • Water