Predictable dynamic program of timing of DNA replication in human cells

Genome Res. 2009 Dec;19(12):2288-99. doi: 10.1101/gr.094060.109. Epub 2009 Sep 18.

Abstract

The organization of mammalian DNA replication is poorly understood. We have produced high-resolution dynamic maps of the timing of replication in human erythroid, mesenchymal, and embryonic stem (ES) cells using TimEX, a method that relies on gaussian convolution of massive, highly redundant determinations of DNA copy-number variations during S phase to produce replication timing profiles. We first obtained timing maps of 3% of the genome using high-density oligonucleotide tiling arrays and then extended the TimEX method genome-wide using massively parallel sequencing. We show that in untransformed human cells, timing of replication is highly regulated and highly synchronous, and that many genomic segments are replicated in temporal transition regions devoid of initiation, where replication forks progress unidirectionally from origins that can be hundreds of kilobases away. Absence of initiation in one transition region is shown at the molecular level by single molecule analysis of replicated DNA (SMARD). Comparison of ES and erythroid cells replication patterns revealed that these cells replicate about 20% of their genome in different quarters of S phase. Importantly, we detected a strong inverse relationship between timing of replication and distance to the closest expressed gene. This relationship can be used to predict tissue-specific timing of replication profiles from expression data and genomic annotations. We also provide evidence that early origins of replication are preferentially located near highly expressed genes, that mid-firing origins are located near moderately expressed genes, and that late-firing origins are located far from genes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation
  • DNA / biosynthesis
  • DNA / genetics
  • DNA Replication Timing*
  • DNA Replication*
  • Embryonic Stem Cells* / cytology
  • Embryonic Stem Cells* / metabolism
  • Erythroid Cells* / cytology
  • Erythroid Cells* / metabolism
  • Gene Dosage
  • Gene Expression Profiling*
  • Humans
  • Mesenchymal Stem Cells* / cytology
  • Mesenchymal Stem Cells* / metabolism
  • Normal Distribution
  • S Phase*

Substances

  • DNA

Associated data

  • GEO/GSE18679