Electrically conductive and optically active porous silicon nanowires

Nano Lett. 2009 Dec;9(12):4539-43. doi: 10.1021/nl903030h.

Abstract

We report the synthesis of vertical silicon nanowire array through a two-step metal-assisted chemical etching of highly doped n-type silicon (100) wafers in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of the as-grown silicon nanowires is tunable from solid nonporous nanowires, nonporous/nanoporous core/shell nanowires, to entirely nanoporous nanowires by controlling the hydrogen peroxide concentration in the etching solution. The porous silicon nanowires retain the single crystalline structure and crystallographic orientation of the starting silicon wafer and are electrically conductive and optically active with visible photoluminescence. The combination of electronic and optical properties in the porous silicon nanowires may provide a platform for novel optoelectronic devices for energy harvesting, conversion, and biosensing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Crystallization / methods*
  • Electric Conductivity
  • Light
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nanotechnology / methods*
  • Particle Size
  • Porosity
  • Refractometry
  • Scattering, Radiation
  • Silicon / chemistry*
  • Surface Properties

Substances

  • Macromolecular Substances
  • Silicon