Spin-orbit-mediated spin relaxation in graphene

Phys Rev Lett. 2009 Oct 2;103(14):146801. doi: 10.1103/PhysRevLett.103.146801. Epub 2009 Sep 29.

Abstract

We investigate how spins relax in intrinsic graphene. The spin-orbit coupling arises from the band structure and is enhanced by ripples. The orbital motion is influenced by scattering centers and ripple-induced gauge fields. Spin relaxation due to Elliot-Yafet and Dyakonov-Perel mechanisms and gauge fields in combination with spin-orbit coupling are discussed. In intrinsic graphene, the Dyakonov-Perel mechanism and spin flip due to gauge fields dominate and the spin-flip relaxation time is inversely proportional to the elastic scattering time. The spin-relaxation anisotropy depends on an intricate competition between these mechanisms. Experimental consequences are discussed.