Cold and novel environment stress affects AVP mRNA in the paraventricular nucleus, but not the supraoptic nucleus: An in Situ hybridization study

Mol Cell Neurosci. 1990 Dec;1(3):233-49. doi: 10.1016/1044-7431(90)90006-p.

Abstract

The distribution and area of label for arginine vasopressin (AVP) mRNA or peptides were studied in rats exposed to cold or novel environments. In situ hybridization histochemistry was employed to detect AVP mRNA in hypothalamic frozen sections with a 45-mer photobiotinylated oligonucleotide probe. The storage of the peptide in both the hypothalamus and the pituitary was determined by immunohistochemistry. Label for mRNA or peptide was then quantified by the Cue-3 color image analysis system. Exposure to 4 degrees C for 30 min caused a 3.5-fold increase in the label for AVP mRNA in the paraventricular nucleus (PVN) compared with that of control rats. This was correlated with a 2-fold elevation in serum ACTH. In addition, rats exposed to 30 min of a novel, thermoneutral (24 degrees C) environment showed a 1.2- to approximately -2.3-fold enhancement of the label for AVP mRNA in the PVN. In contrast, no changes were seen in the supraoptic nucleus (SON) following exposure to either cold or novel environments. Furthermore, neither stress caused significant changes in the storage of AVP peptide in the PVN, SON, median eminence, and posterior lobe of pituitary. This in vivo study demonstrates that PVN and SON neurons respond differentially to cold and novel environment exposures. The elevation of serum ACTH is correlated with the increased level of label for AVP mRNA in the rat hypothalamus, which suggests that AVP may play a role in the regulation of pituitary-adrenal responses to cold and novel environment stresses.