Nanostructured multilayer TiO2-Ge films with quantum confinement effects for photovoltaic applications

J Colloid Interface Sci. 2010 Mar 1;343(1):271-80. doi: 10.1016/j.jcis.2009.11.045. Epub 2009 Nov 26.

Abstract

Multilayer TiO(2)-Ge thin films have been deposited using electron beam evaporation and resistive heating. The thickness of the TiO(2) layers is 20 nm, while the thickness of the Ge layers varies from 2 to 20 nm with a step of 2 nm away from the substrate. These films were characterized by studying their optical, electrical, and structural properties. The films were annealed at various temperatures up to 500 degrees C for 2 h. The films are amorphous up to an annealing temperature of 400 degrees C, although Raman spectra suggest short-range ordering (and adjustments). The films annealed at 450 and 500 degrees C exhibit X-ray reflections of Ge and anatase TiO(2). Illumination in sunlight increases the conductivity of the as-deposited and annealed films. The band gap of the amorphous films changes from 1.27 to 1.41 eV up to 400 degrees C; the major contribution is possibly through direct transition. Two band gap regimes are clearly seen after 450 and 500 degrees C, which have been assigned to an indirect band gap at about 1.2 eV and a direct band gap at about 1.8 eV. Conductivity of the multilayer films has been higher than that of pure Ge film. The conductivity increases with annealing temperature with abrupt increase at about 380 degrees C. The results imply that the TiO(2)-Ge multilayer films may be employed as heterojunctions with tunable band gap energy as related to quantum confinement effects.