Reactions of Trimethylsilyl Fluorosulfonyldifluoroacetate with Purine and Pyrimidine Nucleosides

J Fluor Chem. 2009 Mar 1;130(3):321-328. doi: 10.1016/j.jfluchem.2008.12.004.

Abstract

Difluorocarbene, generated from trimethylsilyl fluorosulfonyldifluoroacetate (TFDA), reacts with the uridine and adenosine substrates preferentially at the enolizable amide moiety of the uracil ring and the 6-amino group of the purine ring. 2',3'-Di-O-acetyl-3'-deoxy-3'-methyleneuridine reacts with TFDA to produce 4-O-difluoromethyl product derived from an insertion of difluorocarbene into the 4-hydroxyl group of the enolizable uracil ring. Reaction of the difluorocarbene with the adenosine substrates having the unprotected 6-amino group in the purine ring produced the 6-N-difluoromethyl derivative, while reaction with 6-N-benzoyl protected adenosine analogues gave the difluoromethyl ether product derived from the insertion of difluorocarbene into the enol form of the 6-benzamido group. Treatment of the 6-N-phthaloyl protected adenosine analogues with TFDA resulted in the unexpected one-pot conversion of the imidazole ring of the purine into the corresponding N-difluoromethylthiourea derivatives. Treatment of the suitably protected pyrimidine and purine nucleosides bearing an exomethylene group at carbons 2', 3' or 4' of the sugar rings with TFDA afforded the corresponding spirodifluorocyclopropyl analogues but in low yields.