Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles

Nanomedicine. 2010 Dec;6(6):738-44. doi: 10.1016/j.nano.2010.05.004. Epub 2010 May 27.

Abstract

In an effort to characterize the interaction of cerium oxide nanoparticles (CNPs) in biological systems, we explored the reactivity of CNPs with the phosphate ester bonds of p-nitrophenylphosphate (pNPP), ATP, o-phospho-l-tyrosine, and DNA. The activity of the bond cleavage for pNPP at pH 7 is calculated to be 0.860 ± 0.010 nmol p-nitrophenol/min/μg CNPs. Interestingly, when CNPs bind to plasmid DNA, no cleavage products are detected. While cerium(IV) complexes generally exhibit the ability to break phosphorus-oxygen bonds, the reactions we report appear to be dependent on the availability of cerium(III) sites, not cerium(IV) sites. We investigated the dephosphorylation mechanism from the first principles and find the reaction proceeds through inversion of the phosphate group similar to an S(N)2 mechanism. The ability of CNPs to interact with phosphate ester bonds of biologically relevant molecules has important implications for their use as potential therapeutics.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Triphosphate / chemistry
  • Cerium / chemistry*
  • DNA / chemistry
  • Hydrolysis
  • Nanoparticles / chemistry*
  • Nitrophenols / chemistry
  • Organophosphates / chemistry*
  • Organophosphorus Compounds / chemistry
  • Phosphotyrosine / chemistry

Substances

  • Nitrophenols
  • Organophosphates
  • Organophosphorus Compounds
  • Phosphotyrosine
  • Cerium
  • nitrophenylphosphate
  • ceric oxide
  • Adenosine Triphosphate
  • DNA