Unstructured hydrophilic sequences in prokaryotic proteomes correlate with dehydration tolerance and host association

J Mol Biol. 2010 Oct 8;402(5):775-82. doi: 10.1016/j.jmb.2010.08.012. Epub 2010 Aug 13.

Abstract

Water loss or desiccation is among the most life-threatening stresses. It leads to DNA double-strand breakage, protein aggregation, cell shrinkage, and low water activity precluding all biological functions. Yet, in all kingdoms of life, rare organisms are resistant to desiccation through prevention or reversibility of such damage. Here, we explore possible hallmarks of prokaryotic desiccation tolerance in their proteomes. The content of unstructured, low complexity (LC) regions was analyzed in a total of 460 bacterial and archaeal proteomes. It appears that species endowed with proteomes abundant in unstructured hydrophilic LC regions are desiccation-tolerant or sporulating bacteria, halophilic archaea and bacteria, or host-associated species. In the desiccation- and radiation-resistant bacterium Deinococcus radiodurans, most proteins that contain large hydrophilic LC regions have unassigned function, but those with known function are mostly involved in diverse cellular recovery processes. Such LC regions are typically absent in orthologous proteins in desiccation-sensitive species. D. radiodurans encodes also special LC proteins, akin to those associated with desiccation resistance of plant seeds and some plants and animals. Therefore, we postulate that large unstructured hydrophilic LC regions and proteins provide for cellular resistance to dehydration and we discuss mechanisms of their protective activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Archaea / chemistry*
  • Archaeal Proteins / chemistry*
  • Bacteria / chemistry*
  • Bacterial Proteins / chemistry*
  • Desiccation
  • Protein Structure, Tertiary
  • Proteome / analysis*

Substances

  • Archaeal Proteins
  • Bacterial Proteins
  • Proteome