Interconnecting gold islands with DNA origami nanotubes

Nano Lett. 2010 Dec 8;10(12):5065-9. doi: 10.1021/nl1033073. Epub 2010 Nov 11.

Abstract

Scaffolded DNA origami has recently emerged as a versatile, programmable method to fold DNA into arbitrarily shaped nanostructures that are spatially addressable, with sub-10-nm resolution. Toward functional DNA nanotechnology, one of the key challenges is to integrate the bottom-up self-assembly of DNA origami with the top-down lithographic methods used to generate surface patterning. In this report we demonstrate that fixed length DNA origami nanotubes, modified with multiple thiol groups near both ends, can be used to connect surface patterned gold islands (tens of nanometers in diameter) fabricated by electron beam lithography (EBL). Atomic force microscopic imaging verified that the DNA origami nanotubes can be efficiently aligned between gold islands with various interisland distances and relative locations. This development represents progress toward the goal of bridging bottom-up and top-down assembly approaches.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • DNA / chemistry*
  • Gold / chemistry*
  • Microscopy, Atomic Force
  • Nanotubes*

Substances

  • Gold
  • DNA