Dynamics of H and D abstraction in the reaction of Cl atom with butane-1,1,1,4,4,4-d6

Phys Chem Chem Phys. 2011 May 14;13(18):8433-40. doi: 10.1039/c1cp20137a. Epub 2011 Feb 11.

Abstract

We report the primary (D-atom) and secondary (H-atom) abstraction dynamics of chlorine atom reaction with butane-1,1,1,4,4,4-d(6). The H- and D-atom abstraction channels were studied over a range of collision energies: 10.4 kcal mol(-1) and 12.9 kcal mol(-1); 5.2 kcal mol(-1) to 12.8 kcal mol(-1), respectively, using crossed molecular beam dc slice ion imaging techniques. Single photon ionization at 157 nm was used to probe the butyl radical products resulting from the H- and D-atom abstraction reactions. These two channels manifest distinct dynamics principally in the translational energy distributions, while the angular distributions are remarkably similar. The reduced translational energy distribution for the primary abstraction showed marked variation with collision energy in the backward direction, while the secondary abstraction showed this variation in the forward direction.