Cyanobacterial Microcystis aeruginosa lipopolysaccharide elicits release of superoxide anion, thromboxane B₂, cytokines, chemokines, and matrix metalloproteinase-9 by rat microglia

Toxicol Sci. 2011 May;121(1):63-72. doi: 10.1093/toxsci/kfr045. Epub 2011 Feb 28.

Abstract

Microcystis aeruginosa (M. aeruginosa) is a cosmopolitan Gram-negative cyanobacterium that may contaminate freshwater by releasing toxins, such as lipopolysaccharide (LPS) during aquatic blooms, affecting environmental and human health. The putative toxic effects of cyanobacterial LPS on brain microglia, a glial cell type that constitutes the main leukocyte-dependent source of reactive oxygen species in the central nervous system, are presently unknown. We tested the hypothesis that in vitro concentration- and time-dependent exposure to M. aeruginosa LPS strain UTCC 299 would activate rat microglia and the concomitant generation of superoxide anion (O₂⁻). After a 17-h exposure of microglia to M.aeruginosa LPS, the following concentration-dependent responses were observed: 0.1-100 ng/ml M. aeruginosa LPS enhanced O₂⁻ generation, with limited inflammatory mediator generation; 1000-10,000 ng/ml M. aeruginosa LPS caused thromboxane B₂ (TXB₂), matrix metalloproteinase-9 (MMP-9), and macrophage inflammatory protein-2 (MIP-2/CXCL2) release, concurrent with maximal O₂⁻ generation; 100,000 ng/mL M. aeruginosa LPS deactivated O₂⁻ production but maintained elevated levels of TXB₂, MMP-9, tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), and interleukin-6 (IL-6), macrophage inflammatory protein 1α (MIP-1α/CCL3), and MIP-2/CXCL2, with concomitant lactic dehydrogenase release. Although M. aeruginosa LPS was consistently less potent than Escherichia coli LPS, with the exception of O₂⁻, TXB₂, and MCP-1/CCL2 generation, it was more efficacious because higher levels of MMP-9, TNF-α, IL-1α, IL-6, MIP-1α/CCL3, and MIP-2/CXCL2 were produced. Our in vitro studies suggest that one or more of the inflammatory mediators released during M. aeruginosa LPS stimulation of microglia may play a critical role in the subsequent ability of microglia to generate O₂⁻. To our knowledge, this is the first experimental evidence that LPS isolated from a M. aeruginosa strain, can activate brain microglia in vitro, as well as the release of O₂⁻, and other inflammatory mediators hypothesized to be involved in neuroinflammation and neurodegeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / drug effects
  • Brain / metabolism
  • Chemokines / metabolism*
  • Cytokines / metabolism*
  • Lipopolysaccharides / pharmacology*
  • Matrix Metalloproteinase 9 / metabolism*
  • Microcystis / chemistry*
  • Microglia / drug effects*
  • Microglia / enzymology
  • Microglia / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Superoxides / metabolism*
  • Thromboxane B2 / metabolism*

Substances

  • Chemokines
  • Cytokines
  • Lipopolysaccharides
  • Superoxides
  • Thromboxane B2
  • Matrix Metalloproteinase 9